在现实世界中,签名的定向网络无处不在。但是,对于分析此类网络的方法,较少的工作提出了频谱图神经网络(GNN)方法。在这里,我们介绍了一个签名的定向拉普拉斯矩阵,我们称之为磁性签名的laplacian,作为在签名的图表上签名的laplacian的自然概括,在有向图上的磁Laplacian。然后,我们使用此矩阵来构建一种新型的光谱GNN结构,并在节点聚类和链接预测任务上进行广泛的实验。在这些实验中,我们考虑了与签名信息有关的任务,与定向信息相关的任务以及与签名和定向信息有关的任务。我们证明,我们提出的光谱GNN有效地合并了签名和定向信息,并在广泛的数据集中获得领先的性能。此外,我们提供了一种新颖的合成网络模型,我们称之为签名的定向随机块模型,以及许多基于财务时间序列中铅滞后关系的新型现实世界数据集。
translated by 谷歌翻译
我们提出和分析了一种新颖的统计程序,即创建的Agrasst,以评估可能以明确形式可用的图形生成器的质量。特别是,Agrasst可用于确定学习的图生成过程是否能够生成类似给定输入图的图。受到随机图的Stein运算符的启发,Agrasst的关键思想是基于从图生成器获得的操作员的内核差异的构建。Agrasst可以为图形生成器培训程序提供可解释的批评,并帮助确定可靠的下游任务样品批次。使用Stein的方法,我们为广泛的随机图模型提供了理论保证。我们在两个合成输入图上提供了经验结果,并具有已知的图生成过程,以及对图形最新的(深)生成模型进行训练的现实输入图。
translated by 谷歌翻译
网络在许多现实世界应用程序中无处不在(例如,编码信任/不信任关系的社交网络,由时间序列数据引起的相关网络)。尽管许多网络都是签名或指示的,或者两者都在图形神经网络(GNN)上缺少统一的软件包,专门为签名和定向网络设计。在本文中,我们提出了Pytorch几何签名的指示,这是一个填补此空白的软件包。在此过程中,我们还提供了简短的审查调查,以分析签名和定向网络的分析,讨论相关实验中使用的数据,提供提出的方法概述,并通过实验评估实施方法。深度学习框架包括易于使用的GNN模型,合成和现实世界数据,以及针对签名和定向网络的特定任务评估指标和损失功能。作为Pytorch几何形状的扩展库,我们提出的软件由开源版本,详细文档,连续集成,单位测试和代码覆盖范围检查维护。我们的代码可在\ url {https://github.com/sherylhyx/pytorch_geometric_signed_directed}上公开获得。
translated by 谷歌翻译
从成对比较中恢复全球排名从时间同步到运动队排名的广泛应用。对应于竞争中匹配的成对比较可以解释为有向图(Digraph)中的边缘,其节点代表例如竞争对手的排名未知。在本文中,我们通过提出所谓的Gnnrank,这是一种基于Digraph嵌入的基于训练的GNN框架,将神经网络引入排名恢复问题。此外,设计了新的目标来编码排名upsess/违规行为。该框架涉及一种排名得分估计方法,并通过展开从可学习的相似性矩阵构建的图形的fiedler矢量计算来增加电感偏差。广泛数据集的实验结果表明,我们的方法具有竞争性,并且通常对基准的表现卓越,并且表现出了有希望的转移能力。代码和预处理数据为:\ url {https://github.com/sherylhyx/gnnrank}。
translated by 谷歌翻译
节点群集是网络分析的强大工具。我们介绍了一个图形神经网络框架,以自我监督的方式获得定向网络的节点嵌入,包括一种新型的概率不平衡损失,可用于网络群集。在这里,我们提出了与方向性密切相关的定向流量不平衡度量,即使簇之间没有密度差,也可以揭示网络中的簇。与文献中的标准方法相反,在本文中,方向性不被视为滋扰,而是包含主要信号。与现有的图形神经网络方法不同,DIGRAC优化了用于聚类的有向流动不平衡无需标签监督,并且与现有的光谱方法不同,并且可以自然合并节点特征。关于合成数据的广泛实验结果,以定向随机块模型的形式,以及不同尺度的现实世界数据,证明我们的方法基于流量不平衡,在比较时在有向图聚类上获得最先进的结果针对文献中的10种最先进方法,用于广泛的噪声和稀疏度,图形结构和拓扑,甚至超过监督方法。
translated by 谷歌翻译